Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity.

نویسندگان

  • Fang Yang
  • Xian Xia
  • Hui-Yan Lei
  • En-Duo Wang
چکیده

The free form of human cytoplasmic arginyl-tRNA synthetase (hcArgRS) is hypothesized to participate in ubiquitin-dependent protein degradation by offering arginyl-tRNA(Arg) to arginyl-tRNA transferase (ATE1). We investigated the effect of hemin on hcArgRS based on the fact that hemin regulates several critical proteins in the "N-end rule" protein degradation pathway. Extensive biochemical evidence has established that hemin could bind to both forms of hcArgRS in vitro. Based on the spectral changes of the Soret band on site-directed protein mutants, we identified Cys-115 as a specific axial ligand of hemin binding that is located in the Add1 domain. Hemin inhibited the catalytic activity of full-length and N-terminal 72-amino acid-truncated hcArgRSs by blocking amino acid activation. Kinetic analysis demonstrated that the K(m) values for tRNA(Arg), arginine, and ATP in the presence of hemin were not altered, but k(cat) values dramatically decreased compared with those in the absence of hemin. By comparison, the activity of prokaryotic ArgRS was not affected obviously by hemin. Gel filtration chromatography suggested that hemin induced oligomerization of both the isolated Add1 domain and the wild type enzyme, which could account for the inhibition of catalytic activity. However, the catalytic activity of an hcArgRS mutant with Cys-115 replaced by alanine (hcArgRS-C115A) was also inhibited by hemin, suggesting that hemin binding to Cys-115 is not responsible for the inhibition of enzymatic activity and that the specific binding may participate in other biological functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex.

Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to...

متن کامل

Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex.

Human glutaminyl-tRNA synthetase (QRS) is one of several mammalian aminoacyl-tRNA synthetases (ARSs) that form a macromolecular protein complex. To understand the mechanism of QRS targeting to the multi-ARS complex, we analyzed both exogenous and endogenous QRSs by immunoprecipitation after overexpression of various Myc-tagged QRS mutants in human embryonic kidney 293 cells. Whereas a deletion ...

متن کامل

Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311

For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activa...

متن کامل

Evidence for the existence of two arginyl-transfer ribonucleic acid synthetase activities in Escherichia coli.

Two arginyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.13, arginine: ribonucleic acid ligase adenosine monophosphate) activities were found in extracts of Escherichia coli strains AB1132 and NP2. The two arginyl-tRNA synthetase activities in extracts of strain AB1132 were found to be separable by diethylaminoethyl-cellulose column chromatography, Sephadex column fractionation, and by...

متن کامل

Crucial role of the high-loop lysine for the catalytic activity of arginyl-tRNA synthetase.

The presence of two short signature sequence motifs (His-Ile-Gly-His (HIGH) and Lys-Met-Ser-Lys (KMSK)) is a characteristic of the class I aminoacyl-tRNA synthetases. These motifs constitute a portion of the catalytic site in three dimensions and play an important role in catalysis. In particular, the second lysine of the KMSK motif (K2) is the crucial catalytic residue for stabilization of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 50  شماره 

صفحات  -

تاریخ انتشار 2010